Year 12	T1	T2	T3	T4	T5	T6
Content / Topic for Term	Indices and surds Polynomials and algebra Coordinate geometry 1 (linear functions) Calculus 1 (differentiation) STATISTICS (see separate curriculum map)	Binomial expansion Coordinate geometry 2 (graphs) Calculus 2 (differentiation) Logarithms 1 STATISTICS (see separate curriculum map)	Coordinate geometry 3 (circles) Trigonometry Calculus 3 (Integration) STATISTICS (see separate curriculum map)	Logarithms 2 Proof Vectors MECHANICS (see separate curriculum map)	Indices and Surds Polynomials and algebra Coordinate geometry 1 (linear functions) Calculus 1 (differentiation) STATISTICS (see separate curriculum map)	Binomial expansion Coordinate geometry 2 (graphs) Calculus 2 (differentiation) Logarithms 1 STATISTICS (see separate curriculum map)
Key knowledge for acquisition, recall and application in assessment or exam	- Simplifying and manipulating surds - Applying the rules of indices to solve exponential equations - Expanding brackets/factorising - Solving linear, quadratic, and simultaneous equations - Completing the square - Use of discriminant	- Use of factorials - Binomial expansion formula and its applications - Recognise and sketch quadratic, cubic, quartic and reciprocal graphs - Transform graphs - Work out points of intersection between graphs and the x - y axes - Differentiate polynomials	- General equation of a circle - Finding centre, radius, and diameter of a circle - Application of Pythagoras and SOHCAHTOA to right-angled triangles within a circle - Equations of tangents to circles	- Natural logarithms - Use linear models to estimate parameters of log functions - Solve exponential growth and decay problems - Know when to use proof by deduction, exhaustion and	- Simplifying and manipulating surds - Applying the rules of indices to solve exponential equations - Expanding brackets/factorising - Solving linear, quadratic, and simultaneous equations - Completing the square - Use of discriminant	- Use of factorials - Binomial expansion formula and its applications - Recognise and sketch quadratic, cubic, quartic and reciprocal graphs - Transform graphs - Work out points of intersection between graphs and the x - y axes

	- Application of Iong division to algebraic division - Use of factor and remainder theorem - Know and use both formulae for equations of a line - Equations for midpoint and gradient - Equations of parallel and perpendicular lines - $1^{\text {st }}$ principles formula - Understand that differentiating determines the gradient of a curve at any point	- Use calculus to work out stationary points - Work out equations of tangents and normals - Understand and articulate the link between logarithms and indices - Know and apply the three laws of logs to simplify or evaluate logarithms	- Circle theorems from GCSE and their applications - Sine and cosine rule and area of triangle formulae and their applications - Recognising and transforming graphs of trig functions - CAST diagram - Solving trig equations - Two trig identities - Know that integration is the inverse of differentiation - Work out definite and indefinite integrals - Calculate the area under a curve by integration	counterexample - Use Pythagoras to calculate magnitude of a vector - Use trigonometry to calculate direction of a vector - Identify parallel and colinear vectors - Work out relative displacement of two vectors and be able to show this using a diagram	- Application of long division to algebraic division - Use of factor and remainder theorem - Know and use both formulae for equations of a line - Equations for midpoint and gradient - Equations of parallel and perpendicular lines - ${ }^{\text {st }}$ principles formula - Understand that differentiating determines the gradient of a curve at any point	- Differentiate polynomials - Use calculus to work out stationary points - Work out equations of tangents and normals - Understand and articulate the link between logarithms and indices - Know and apply the three laws of logs to simplify or evaluate logarithms
Key skills to apply in assessment or exam	- Indices and surds - Polynomials and algebra	- Binomial expansion	- Coordinate geometry 3 (circles) - Trigonometry	- Logarithms 2 - Proof - Vectors	- Indices and surds - Polynomials and algebra	- Binomial expansion

